Monday, February 3, 2020

Biography - 2020

Stephanie has focused on volcanic and magmatic activity throughout her career, first investigating Icelandic volcanoes using campaign GPS for her MSc (Wits, 2009); and then sills and dykes of the Karoo LIP using aeromagnetic and historic seismic data for her PhD (Wits, 2015). 
Stephanie also has experience with investigating the 3D structure of economically important geological bodies. For her PhD she also created a 3D model of the Karoo Basin, which is the current focus of shale gas investigations. The model was constrained by potential field, seismic, borehole, petrophysical and teleseismic data. During her postdoc she also conducted investigations into the western and southern lobes of the Bushveld Complex using 2D and 3D seismic data and aeromagnetic data. 
Stephanie's current research focuses through CIMERA are gas deposits offshore the south coast of South Africa using 3D seismic data; as well as the deeper lithospheric structure of the Bushveld Complex using seismic and gravity data.
She is currently lecturing at the School of Geoscience at Wits University. Stephanie has been on the South African Geophysical Association committee since 2015 and the SAGA conference organising committee in 2017 and 2019.

Monday, August 27, 2018

Fun graphics

Vibration Animations

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Dispersion of Flexural Waves

https://www.acs.psu.edu/drussell/Demos/Dispersion/Flexural.html

Waves in a Dispersive Medium

https://www.acs.psu.edu/drussell/Demos/Dispersion/dispersion.html

Oscillation of a Simple Pendulum

https://www.acs.psu.edu/drussell/Demos/Pendulum/Pendulum.html

Friday, October 30, 2015

South African High School Mapwork Geography Summary Notes

In 2015 I taugh Mapwork Geography at Grace Trinity School for Girls in Johannesburg

While I found the textbooks very helpful (Mapwork Made Easy and Platinum series), I found a summary was missing of:

- Climate
- Drainage
- Farming
- Crops
- Urban Land Use Zones

Please find the summary at the following public link:
https://drive.google.com/file/d/0B9In9AOnWyDRUUo3Vmxrd0xCalk/view?usp=sharing

I also found I wanted a "cheat sheet" for the girls to have at hand when doing all of the calculations to help them remember the steps (calculation true bearing, magnetic declination, gradient, etc).

Please find it at:
https://drive.google.com/file/d/0B9In9AOnWyDROTdVS2k1d0s0ZWM/view?usp=sharing

Sorry I didn't type it

Sunday, August 23, 2015

My CV

Please download my CV using the link below:

https://drive.google.com/open?id=1R03SCVNbPWd3WNAl6QnYw-RVFk_c1itK

Tuesday, August 18, 2015

Contact Me

Email: steph.scheiber@gmail.com

Research Gate: https://www.researchgate.net/profile/Stephanie_Scheiber-Enslin
Orcid ID: orcid.org/0000-0002-6490-6659

Tuesday, August 11, 2015

Regional Gravity and Magnetic Grids for South Africa

These grids are freely available from the Council for Geoscience, though not always easily accessible

Let me know if you need me to share the files with you!

Monday, August 10, 2015

Matlab Program - Response due to Hekla Mogi source between 1994 and 2003 (Iceland)



function [TOTAL9403]=Mogi_Hekla_94_03(VCh94_03,dpth94_03);

% Program written by: Stephanie Scheiber
% Date: 2007-2008
% Input and output values: Volume change (VCh94_03) and depth (dpth94_03)
% of Hekla source; Rate of deformation at each site (TOTAL9403,horizontal
% deformation is the component parallel to spreading (N78W))
% Reference: Mogi, K. (1958). "Relations between the eruptions of various
% volcanoes and the deformations of the ground surfaces around them."Bull
% of Earthquake Research Institute 36: 99-134.
% Description: Horizontal and vertical displacements and rates (for 1994-
% 2003) over a Mogi source

% User inputted values
VChange=VCh94_03; % Volume Change (km3)
depth=dpth94_03; % Chamber depth (km)
rdist=108; % Length of grid area (km)
sspace=200; % Grid spacing (km)

% Converting from kilometres to metres
depth2 = depth*10^3;
VChange2 = VChange*10^9;
rdist2 = rdist*10^3;

% MESHGRID generates X and Y matrices for the grid area
[x,y]=meshgrid((-1*rdist2/2):sspace:(rdist2/2));
                                 
% Radial Distance
r = sqrt(x.^2+y.^2);

% Vertical displacement due to a Mogi source
const = 3/(4*pi);
Uz = (const*VChange2*depth2)./((depth2^2+r.^2).^(3/2));

% Horizontal displacement due to a Mogi source
Ur = (const*VChange2*r)./((depth2^2+r.^2).^(3/2));

% Site and Mogi source locations in WGS84, UTM Zone 27N
mogix=565000.4372;
mogiy=7096999.581;

D353x=580323.0411;
D356x=587262.2914;
D359x=592590.3579;
D361x=595094.6002;
ISAKx=560874.8819;
VALAx=572178.0131;
KROKx=578057.3671;
D364x=595822.0785;
D365x=596868.8406;
SKHRx=555092.5163;
PALAx=562381.5899;
SATUx=585955.0103;
KGILx=599775.4237;
BRSKx=571560.1012;
DROPx=570164.8208;
THRAx=588598.9273;
   
D353y=7112541.316;
D356y=7108269.393;
D359y=7109538.698;
D361y=7107384.464;
ISAKy=7110983.683;
VALAy=7106767.333;
KROKy=7105794.749;
D364y=7099601.906;
D365y=7097404.294;
SKHRy=7079668.451;             
PALAy=7084263.139;
SATUy=7084821.087;
KGILy=7083000.709;
BRSKy=7091147.335;
DROPy=7087771.71;
THRAy=7078205.599;

% Determining the calculated displacement at each site due to the Mogi
% source deformation.

%UTM co-ordinates are transformed into grid co-ordinates (column and row values).
D353coly=int16(271-((D353y-mogiy)/200));
D353rowx=int16(271-((D353x-mogix)/200));
D356coly=int16(271-((D356y-mogiy)/200));
D356rowx=int16(271-((D356x-mogix)/200));
D359coly=int16(271-((D359y-mogiy)/200));
D359rowx=int16(271-((D359x-mogix)/200));
D361coly=int16(271-((D361y-mogiy)/200));
D361rowx=int16(271-((D361x-mogix)/200));
ISAKcoly=int16(271-((ISAKy-mogiy)/200));
ISAKrowx=int16(271-((ISAKx-mogix)/200));
VALAcoly=int16(271-((VALAy-mogiy)/200));
VALArowx=int16(271-((VALAx-mogix)/200));
KROKcoly=int16(271-((KROKy-mogiy)/200));
KROKrowx=int16(271-((KROKx-mogix)/200));
D364coly=int16(271-((D364y-mogiy)/200));
D364rowx=int16(271-((D364x-mogix)/200));
D365coly=int16(271-((D365y-mogiy)/200));
D365rowx=int16(271-((D365x-mogix)/200));
SKHRcoly=int16(271-((SKHRy-mogiy)/200));
SKHRrowx=int16(271-((SKHRx-mogix)/200));
PALAcoly=int16(271-((PALAy-mogiy)/200));
PALArowx=int16(271-((PALAx-mogix)/200));
SAcoly=int16(271-((SATUy-mogiy)/200));
SArowx=int16(271-((SATUx-mogix)/200));
KGcoly=int16(271-((KGILy-mogiy)/200));
KGrowx=int16(271-((KGILx-mogix)/200));
BRcoly=int16(271-((BRSKy-mogiy)/200));
BRrowx=int16(271-((BRSKx-mogix)/200));
DRcoly=int16(271-((DROPy-mogiy)/200));
DRrowx=int16(271-((DROPx-mogix)/200));
TAcoly=int16(271-((THRAy-mogiy)/200));
TArowx=int16(271-((THRAx-mogix)/200));

% Angle between the site and Mogi source relative to an east-west axis
D353angle=atan((D353y-mogiy)/(D353x-mogix))*180/pi;
D356angle=atan((D356y-mogiy)/(D356x-mogix))*180/pi;
D359angle=atan((D359y-mogiy)/(D359x-mogix))*180/pi;
D361angle=atan((D361y-mogiy)/(D361x-mogix))*180/pi;
ISAKangle=atan((ISAKy-mogiy)/(ISAKx-mogix))*180/pi;
VALAangle=atan((VALAy-mogiy)/(VALAx-mogix))*180/pi;
KROKangle=atan((KROKy-mogiy)/(KROKx-mogix))*180/pi;
D364angle=atan((D364y-mogiy)/(D364x-mogix))*180/pi;
D365angle=atan((D365y-mogiy)/(D365x-mogix))*180/pi;
SKHRangle=atan((SKHRy-mogiy)/(SKHRx-mogix))*180/pi;
PALAangle=atan((PALAy-mogiy)/(PALAx-mogix))*180/pi;
SAangle=atan((SATUy-mogiy)/(SATUx-mogix))*180/pi;
KGangle=atan((KGILy-mogiy)/(KGILx-mogix))*180/pi;
BRangle=atan((BRSKy-mogiy)/(BRSKx-mogix))*180/pi;
DRangle=atan((DROPy-mogiy)/(DROPx-mogix))*180/pi;
TAangle=atan((THRAy-mogiy)/(THRAx-mogix))*180/pi;

% The horizontal displacement experienced at each site
% due to Mogi deformation [in m]
D353=Ur(D353rowx,D353coly);
D356=Ur(D356rowx,D356coly);
D359=Ur(D359rowx,D359coly);
D361=Ur(D361rowx,D361coly);
ISAK=Ur(ISAKrowx,ISAKcoly);
VALA=Ur(VALArowx,VALAcoly);
KROK=Ur(KROKrowx,KROKcoly);
D364=Ur(D364rowx,D364coly);
D365=Ur(D365rowx,D365coly);
SKHR=Ur(SKHRrowx,SKHRcoly);
PALA=Ur(PALArowx,PALAcoly);
SATU=Ur(SArowx,SAcoly);
KGIL=Ur(KGrowx,KGcoly);
BRSK=Ur(BRrowx,BRcoly);
DROP=Ur(DRrowx,DRcoly);
THRA=Ur(TArowx,TAcoly);

% Calculating the x and y components of the horizontal displacements [in m]
D353x=D353*cos(D353angle*pi/180);
D353y=D353*sin(D353angle*pi/180);
D356x=D356*cos(D356angle*pi/180);
D356y=D356*sin(D356angle*pi/180);
D359x=D359*cos(D359angle*pi/180);
D359y=D359*sin(D359angle*pi/180);
D361x=D361*cos(D361angle*pi/180);
D361y=D361*sin(D361angle*pi/180);
ISAKx=ISAK*cos(ISAKangle*pi/180);
ISAKy=ISAK*sin(ISAKangle*pi/180);
VALAx=VALA*cos(VALAangle*pi/180);
VALAy=VALA*sin(VALAangle*pi/180);
KROKx=KROK*cos(KROKangle*pi/180);
KROKy=KROK*sin(KROKangle*pi/180);
D364x=D364*cos(D364angle*pi/180);
D364y=D364*sin(D364angle*pi/180);
D365x=D365*cos(D365angle*pi/180);
D365y=D365*sin(D365angle*pi/180);
SKHRx=SKHR*cos(SKHRangle*pi/180);
SKHRy=SKHR*sin(SKHRangle*pi/180);
PALAx=PALA*cos(PALAangle*pi/180);
PALAy=PALA*sin(PALAangle*pi/180);
SATUx=SATU*cos(SAangle*pi/180);
SATUy=SATU*sin(SAangle*pi/180);
KGILx=KGIL*cos(KGangle*pi/180);
KGILy=KGIL*sin(KGangle*pi/180);
BRSKx=BRSK*cos(BRangle*pi/180);
BRSKy=BRSK*sin(BRangle*pi/180);
DROPx=DROP*cos(DRangle*pi/180);
DROPy=DROP*sin(DRangle*pi/180);
THRAx=THRA*cos(TAangle*pi/180);
THRAy=THRA*sin(TAangle*pi/180);

% Vertical displacements for each site
D353z=Uz(D353rowx,D353coly);
D356z=Uz(D356rowx,D356coly);
D359z=Uz(D359rowx,D359coly);
D361z=Uz(D361rowx,D361coly);
ISAKz=Uz(ISAKrowx,ISAKcoly);
VALAz=Uz(VALArowx,VALAcoly);
KROKz=Uz(KROKrowx,KROKcoly);
D364z=Uz(D364rowx,D364coly);
D365z=Uz(D365rowx,D365coly);
SKHRz=Uz(SKHRrowx,SKHRcoly);
PALAz=Uz(PALArowx,PALAcoly);
SATUz=Uz(SArowx,SAcoly);
KGILz=Uz(KGrowx,KGcoly);
BRSKz=Uz(BRrowx,BRcoly);
DROPz=Uz(DRrowx,DRcoly);
THRAz=Uz(TArowx,TAcoly);

% Table of horizontal (x and y) and vertical displacements
D3531=[D353x,D353y,D353z];
D3561=[D356x,D356y,D356z];
D3591=[D359x,D359y,D359z];
D3611=[D361x,D361y,D361z];
ISAK1=[ISAKx,ISAKy,ISAKz];
VALA1=[VALAx,VALAy,VALAz];
KROK1=[KROKx,KROKy,KROKz];
D3641=[D364x,D364y,D364z];
D3651=[D365x,D365y,D365z];
SKHR1=[SKHRx,SKHRy,SKHRz];
PALA1=[PALAx,PALAy,PALAz];
SATU1=[SATUx,SATUy,SATUz];
KGIL1=[KGILx,KGILy,KGILz];
BRSK1=[BRSKx,BRSKy,BRSKz];
DROP1=[DROPx,DROPy,DROPz];
THRA1=[THRAx,THRAy,THRAz];
TOTAL=[D3531;D3561;D3591;D3611;ISAK1;VALA1;KROK1;D3641;D3651;SKHR1;PALA1;SATU1;KGIL1;BRSK1;DROP1;THRA1];

% Calculating the rate of deformation due to the Mogi source for each site [in m/yr]
% (i.e., Displacement divided by 9 years [1994-2003])
D353_v=D353/9;
D353x_v=D353x/9;
D353y_v=D353y/9;
D356_v=D356/9;
D356x_v=D356x/9;
D356y_v=D356y/9;
D359_v=D359/9;
D359x_v=D359x/9;
D359y_v=D359y/9;
D361_v=D361/9;
D361x_v=D361x/9;
D361y_v=D361y/9;
ISAK_v=ISAK/9;
ISAKx_v=ISAKx/9;
ISAKy_v=ISAKy/9;
VALA_v=VALA/9;
VALAx_v=VALAx/9;
VALAy_v=VALAy/9;
KROK_v=KROK/9;
KROKx_v=KROKx/9;
KROKy_v=KROKy/9;
D364_v=D364/9;
D364x_v=D364x/9;
D364y_v=D364y/9;
D365_v=D365/9;
D365x_v=D365x/9;
D365y_v=D365y/9;
SKHR_v=SKHR/9;
SKHRx_v=SKHRx/9;
SKHRy_v=SKHRy/9;
PALA_v=PALA/9;
PALAx_v=PALAx/9;
PALAy_v=PALAy/9;
SATU_v=SATU/9;
SATUx_v=SATUx/9;
SATUy_v=SATUy/9;
KGIL_v=KGIL/9;
KGILx_v=KGILx/9;
KGILy_v=KGILy/9;
BRSK_v=BRSK/9;
BRSKx_v=BRSKx/9;
BRSKy_v=BRSKy/9;
DROP_v=DROP/9;
DROPx_v=DROPx/9;
DROPy_v=DROPy/9;
THRA_v=THRA/9;
THRAx_v=THRAx/9;
THRAy_v=THRAy/9;

% Vertical velocities
D353z_v=D353z/9;
D356z_v=D356z/9;
D359z_v=D359z/9;
D361z_v=D361z/9;
ISAKz_v=ISAKz/9;
VALAz_v=VALAz/9;
KROKz_v=KROKz/9;
D364z_v=D364z/9;
D365z_v=D365z/9;
SKHRz_v=SKHRz/9;
PALAz_v=PALAz/9;
SATUz_v=SATUz/9;
KGILz_v=KGILz/9;
BRSKz_v=BRSKz/9;
DROPz_v=DROPz/9;
THRAz_v=THRAz/9;

% Table of horizontal (x, y, and radial) and vertical velocities
D3532=[D353x_v,D353y_v,D353z_v];
D3562=[D356x_v,D356y_v,D356z_v];
D3592=[D359x_v,D359y_v,D359z_v];
D3612=[D361x_v,D361y_v,D361z_v];
ISAK2=[ISAKx_v,ISAKy_v,ISAKz_v];
VALA2=[VALAx_v,VALAy_v,VALAz_v];
KROK2=[KROKx_v,KROKy_v,KROKz_v];
D3642=[D364x_v,D364y_v,D364z_v];
D3652=[D365x_v,D365y_v,D365z_v];
SKHR2=[SKHRx_v,SKHRy_v,SKHRz_v];
PALA2=[PALAx_v,PALAy_v,PALAz_v];
SATU2=[SATUx_v,SATUy_v,SATUz_v];
KGIL2=[KGILx_v,KGILy_v,KGILz_v];
BRSK2=[BRSKx_v,BRSKy_v,BRSKz_v];
DROP2=[DROPx_v,DROPy_v,DROPz_v];
THRA2=[THRAx_v,THRAy_v,THRAz_v];
TOTALv=[D3532;D3562;D3592;D3612;ISAK2;VALA2;KROK2;D3642;D3652;SKHR2;PALA2;SATU2;KGIL2;BRSK2;DROP2;THRA2];

% Calculating the component of the horizontal velocity parallel to spreading
% (i.e. N78E) for each site [in m/yr]
DiffD353=abs(282-(360+(90-D353angle)));
comptD353=D353_v*cos(DiffD353*pi/180);
comptxD353=comptD353*cos((282-270)*pi/180)*-1*1000;
comptyD353=comptD353*sin((282-270)*pi/180)*1000;

DiffD356=abs(282-(360+(90-D356angle)));
comptD356=D356_v*cos(DiffD356*pi/180);
comptxD356=comptD356*cos((282-270)*pi/180)*-1*1000;
comptyD356=comptD356*sin((282-270)*pi/180)*1000;

DiffD359=abs(282-(360+(90-D359angle)));
comptD359=D359_v*cos(DiffD359*pi/180);
comptxD359=comptD359*cos((282-270)*pi/180)*-1*1000;
comptyD359=comptD359*sin((282-270)*pi/180)*1000;

DiffD361=abs(282-(360+(90-D361angle)));
comptD361=D361_v*cos(DiffD361*pi/180);
comptxD361=comptD361*cos((282-270)*pi/180)*-1*1000;
comptyD361=comptD361*sin((282-270)*pi/180)*1000;

DiffISAK=abs(282-(360+(90-ISAKangle)));
comptISAK=ISAK_v*cos(DiffISAK*pi/180);
comptxISAK=comptISAK*cos((282-270)*pi/180)*1000;
comptyISAK=comptISAK*sin((282-270)*pi/180)*-1*1000;

DiffVALA=abs(282-(360+(90-VALAangle)));
comptVALA=VALA_v*cos(DiffVALA*pi/180);
comptxVALA=comptVALA*cos((282-270)*pi/180)*-1*1000;
comptyVALA=comptVALA*sin((282-270)*pi/180)*1000;

DiffKROK=abs(282-(360+(90-KROKangle)));
comptKROK=KROK_v*cos(DiffKROK*pi/180);
comptxKROK=comptKROK*cos((282-270)*pi/180)*-1*1000;
comptyKROK=comptKROK*sin((282-270)*pi/180)*1000;

DiffD364=abs(282-(360+(90-D364angle)));
comptD364=D364_v*cos(DiffD364*pi/180);
comptxD364=comptD364*cos((282-270)*pi/180)*-1*1000;
comptyD364=comptD364*sin((282-270)*pi/180)*1000;

DiffD365=abs(282-(360+(90-D365angle)));
comptD365=D365_v*cos(DiffD365*pi/180);
comptxD365=comptD365*cos((282-270)*pi/180)*-1*1000;
comptyD365=comptD365*sin((282-270)*pi/180)*1000;

DiffSKHR=abs(282-(360+(90-SKHRangle)));
comptSKHR=SKHR_v*cos(DiffSKHR*pi/180);
comptxSKHR=comptSKHR*cos((282-270)*pi/180)*1000;
comptySKHR=comptSKHR*sin((282-270)*pi/180)*-1*1000;

DiffPALA=abs(282-(360+(90-PALAangle)));
comptPALA=PALA_v*cos(DiffPALA*pi/180);
comptxPALA=comptPALA*cos((282-270)*pi/180)*1000;
comptyPALA=comptPALA*sin((282-270)*pi/180)*-1*1000;

DiffSA=abs(282-(360+(90-SAangle)));
comptSA=SATU_v*cos(DiffSA*pi/180);
comptxSA=comptSA*cos((282-270)*pi/180)*-1*1000;
comptySA=comptSA*sin((282-270)*pi/180)*1000;

DiffKG=abs(282-(360+(90-KGangle)));
comptKG=KGIL_v*cos(DiffKG*pi/180);
comptxKG=comptKG*cos((282-270)*pi/180)*-1*1000;
comptyKG=comptKG*sin((282-270)*pi/180)*1000;

DiffBR=abs(282-(360+(90-BRangle)));
comptBR=BRSK_v*cos(DiffBR*pi/180);
comptxBR=comptBR*cos((282-270)*pi/180)*-1*1000;
comptyBR=comptBR*sin((282-270)*pi/180)*1000;

DiffDR=abs(282-(360+(90-DRangle)));
comptDR=DROP_v*cos(DiffDR*pi/180);
comptxDR=comptDR*cos((282-270)*pi/180)*-1*1000;
comptyDR=comptDR*sin((282-270)*pi/180)*1000;

DiffTA=abs(282-(360+(90-TAangle)));
comptTA=THRA_v*cos(DiffTA*pi/180);
comptxTA=comptTA*cos((282-270)*pi/180)*-1*1000;
comptyTA=comptTA*sin((282-270)*pi/180)*1000;

% Table of components of the horizontal velocities parallel to plate
% spreading

TOTAL9403=[comptxD353,comptyD353;comptxD356,comptyD356;comptxD359,comptyD359;comptxD361,comptyD361;comptxISAK,comptyISAK;comptxVALA,comptyVALA;comptxKROK,comptyKROK;comptxD364,comptyD364;comptxD365,comptyD365;comptxSKHR,comptySKHR;comptxPALA,comptyPALA;comptxSA,comptySA;comptxKG,comptyKG;comptxBR,comptyBR;comptxDR,comptyDR;comptxTA,comptyTA];